

SC0032

Sample Code

AT32Fxx MCU CAN communication mode

Introduction

This sample code is written to demonstrate how to use AT32 MCU's CAN communication modes.

Note: This sample code is written based on Artery's V2.x.x BSP. For other versions of BSP, users should pay attention to the differences in use.

Applicable products:

Product series	AT32F403 series
	AT32F403A series
	AT32F407 series
	AT32F413 series
	AT32F415 series
	AT32F425 series
	AT32F402 series
	AT32F405 series
	AT32F423 series
	AT32F435 series
	AT32F437 series

List of major peripherals used:

Peripherals	CAN
	GPIO

1 Quick start

1.1 Hardware resources

1) AT-START-F403A V1.0 evaluation board (for other product series, please use corresponding evalution board). Use GPIO PB8 and PB9.

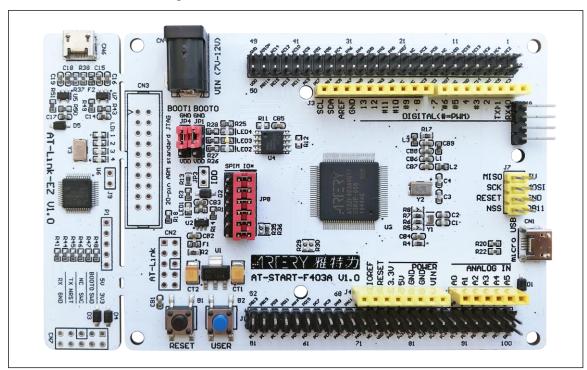


Figure 1. AT-START-F403A V1.0 evaluation board

2) CAN driver IC and simple schematic

U4 CAN TX DGND CN₅ TXD S DGND CANH **GND** CANH VCC CAN RX **RXD** Vref R14 TJA 1050 120 ED130F-02P TJA1050/SN65HVD23 A CAN

Figure 2. CAN driver IC and circuit connection

TJA1050 (driver IC) is connected to MCU and CAN bus analyzer. It is mainly used for data conversion.

On the MCU part:

- ◆ CAN_TX (refer to MCU's GPIOB_PB9)——TJA1050's TXD pin
- ◆ CAN_RX (refer to MCU's GPIOB_PB8)——TJA1050's RXD pin

On the CAN bus analyzer part:

- ◆ CAN1_L—TJA1050's CANL pin (refer to pin2 on CN5 in Figure 2)
- ◆ CAN1_H—TJA1050's CANH pin (refer to pin1 on CN5 in Figure 2)
- 3) CAN bus analyzer and its wiring

2023.03.21 2 Rev 2.0.1

Figure 3. CAN bus analyzer

Note: Besides connecting to CAN1_L and CAN1_H, the CAN bus analysis device must share the same ground with MCU.

1.2 Software resources

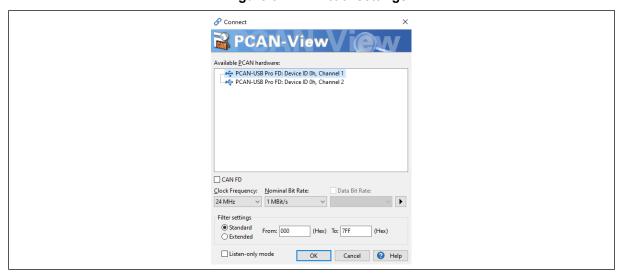
- 1) SourceCode
 - can_communication_mode

Note: All of projects are built based on Keil 5. For the need to run in other compiling environments, user can make simple adjustments according to AT32xxx_Firmware_Library_V2.x.x\project\at_start_xxx\templates.

1.3 Example case

- Open the source code can_communication_mode, compile and download it to the evaluation board
- 2) This test uses AT-START-F403A V1.0 evaluation board, so in Figure 4 we choose AT32F403A

Figure 4. Choose Keil projejct



 Open *PCAN-tool*, select a device and open it, select "Clock Frequency" and set 1Mbit/s in Nominal Bit Rate, then click "OK"

2023.03.21 3 Rev 2.0.1

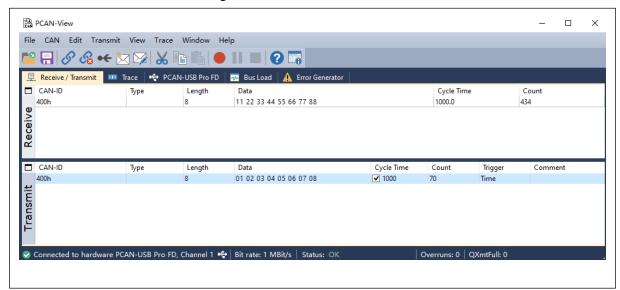


Figure 5. PCAN-tool settings

4) After opening **PCAN-tool**, you would see the following information relating to data receive and transmit.

Figure 6. Data receive and transmit

In "Transmit" column, you can set data format and content which are to be sent to MCU.

In "Receive" column, you can see data sent from MCU.

In addition to *PCAN-tool* monitoring, MCU's LED2 also indicates an incoming message with 0x400 as a frame ID; MCU's LED4 will toggle when MCU is sending messages at periodic intervals.

2023.03.21 4 Rev 2.0.1

2 Revision history

Table 1. Document revision history

Date	Revision	Changes
2020.09.13	1.0.0	Initial release
2023.03.21	2.0.1	Updated figures

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services, and ARTERY assumes no liability whatsoever relating to the choice, selection or use of the ARTERY products and services described herein

No license, express or implied, to any intellectual property rights is granted under this document. If any part of this document deals with any third party products or services, it shall not be deemed a license granted by ARTERY for the use of such third party products or services, or any intellectual property contained therein, or considered as a warranty regarding the use in any manner of such third party products or services or any intellectual property contained therein.

Unless otherwise specified in ARTERY's terms and conditions of sale, ARTERY provides no warranties, express or implied, regarding the use and/or sale of ARTERY products, including but not limited to any implied warranties of merchantability, fitness for a particular purpose (and their equivalents under the laws of any jurisdiction), or infringement on any patent, copyright or other intellectual property right.

Purchasers hereby agree that ARTERY's products are not designed or authorized for use in: (A) any application with special requirements of safety such as life support and active implantable device, or system with functional safety requirements; (B) any aircraft application; (C) any aerospace application or environment; (D) any weapon application, and/or (E) or other uses where the failure of the device or product could result in personal injury, death, property damage. Purchasers' unauthorized use of them in the aforementioned applications, even if with a written notice, is solely at purchasers' risk, and Purchasers are solely responsible for meeting all legal and regulatory requirements in such use.

Resale of ARTERY products with provisions different from the statements and/or technical characteristics stated in this document shall immediately void any warranty grant by ARTERY for ARTERY's products or services described herein and shall not create or expand any liability of ARTERY in any manner whatsoever.

© 2023 Artery Technology -All rights reserved